
An algebraic approach to irreversible dynamical descriptions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 L29

(http://iopscience.iop.org/0305-4470/17/2/001)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) L29-L33. Printed in Great Britain 

LE'ITER TO THE EDITOR 

An algebraic approach to irreversible dynamical 
descriptions 

J P Constantopoulos and C N Ktorides 
Physics Department, University of Athens, Athens, Greece 
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Abstract. We establish a connection between the non-unitary transformation scheme which 
breaks the time reversibility at the microscopical level and an algebraic deformation scheme 
which generalises the Lie product. This formal approach is further supported by an explicit 
construction of the various operators involved. The compatibility conditions are considered 
for this case and are found to be automatically satisfied by the algebraic deformation 
scheme in the particular case of the Fokker-Planck equation. In this way, a particular 
model of the non-unitary transformation scheme is given constructively. 

In this note we present a construction of the CP operator, which results formally in the 
A-transformation scheme of Prigogine and coworkers (Misra and Prigogine 1983, 
Prigogine 1979, 1981, Prigogine et a1 1973), through an algebraic deformation 
approach (Fronteau et a1 1979). Furthermore we shall demonstrate the intimate 
connection between the two aforementioned approaches and in particular, how the 
algebraic deformation scheme can be regarded as the case of what Prigogine et a1 call 
intrinsically random systems. We recall that the physically relevant distribution function 
p is defined in Prigogine (1981) by p' = K ' p ,  where A is a non-unitary transformation, 
and satisfies the modified Liouville equation 

id$ = @b (1) 

where @ ( L )  = h-'LA. Here L denotes the formal Liouville operator for a Hamiltonian 
system which is Hermitian and which can be easily adapted either to the classical 
(Poisson brackets) or to the quantum mechanical (commutator) case (Prigogine et a1 
1973). Now the requirement for the existence of a Lyapounov function implies the 
star Hermiticity condition on CP, namely 

i@(L) =[iO(L)]* (2) 
where by definition 

@*(I,) = CP(-L)* 

and where the dagger denotes Hermitian conjugation. The above condition is a 
necessary ingredient for establishing an H-theorem (Prigogine 1981). In addition the 
star Hermiticity condition guarantees that in general the operator Q, can be divided 
into an even and an odd part. In other words instead of (1) we may write 

idl; = ( @ o d d + ~ e V ) p '  ( l a )  
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having so transformed the macroscopic thermodynamics distinction between reversible 
(aev) and irreversible (aodd) processes into the microscopic description. 

At this point, it is worth noticing that Grmela and Iscoe (1978) have also considered 
a unique decomposition of the general kinetic equation by writing 

atp’ = R - ( A  + R+(p’) (3) 

where R-(p’) stands for the time reversible part of the right-hand side and R+(p’) 
incorporates the irreversible behaviour which according to the previous considerations 
may be thought of as brought about by the non-unitary mapping A. 

It is important to notice the difference between ( l a )  and (3). As noted already, 
( l a )  is a ‘generalised’ Liouville equation which transcribes to the microscopic domain 
the thermodynamical distinction between reversible and irreversible processes. 
Equation (3), on the other hand, is a genuine macroscopic equation. Attributing the 
latter equation to the microscopic domain, Fronteau (1981 and references therein) 
has reached an interesting new interpretation. According to Fronteau (1981) the 
non-equilibrium statistical mechanical equation (3) leads to a quasiparticle concept. 
This new concept corresponds to a ‘total’ picture emerging for a particle when the 
interaction with all other particles is taken into account. Here, there occurs an 
interesting analogy with quantum field theory where one considers a bare and dressed 
particle, the latter being conceived of as a ‘final’ entity emerging once microscopic 
interactions have been taken into account. 

The question arises whether (3) can be cast in the operator form of ( l a )  and vice 
versa. We shall show that this can be naturally achieved within the Lie admissible 
deformation scheme which generalises the Lie algebraic structure of the Poisson 
bracket. We recall that according to Fronteau et al (1979) the classical Liouville 
equation can be generalised by replacing the Poisson bracket with a new one, namely 

a,; = (e a (4) 

where 

(H ,  p’) = HR; + p’TH. 

In the above equations H is a ‘Hamiltonian function’ which describes only a part of 
the system. R and T are operators which in certain special cases reduce to functions 
on the phase space. We stress that (4) refers to the evolution of the physically relevant 
distribution function in phase space. It is for this reason that we have denoted the 
density in (4) by p’. 

Operators R and T describe the deformation content of the theory. According to 
our point of view these operators are capable of incorporating the dynamical content 
which leads to the quasiparticle picture. 

We are now in position to relate, at least formally, the non-unitary transformation 
p + p’= A-lp with the aforementioned deformation scheme. In particular, if we start 
with the full Liouville equation and act by A-’ from the left we get 

ia,; = h-’HAp’- $7. ( 5 )  

Comparing with (4) and (4a) we notice that the operation by A-’ amounts to  the 
identification 

A-‘HA= HR, T=-I ,  (6a, b )  
where I is the identity operator. 
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Clearly, equations ( 6 a )  and (66 )  relate (formally) the two aforementioned schemes. 
In particular, they provide a prescription for the specification of the non-unitary 
operator A provided that the deformation operator R is known. Conversely, if A is 
known a corresponding deformation operator can, in principle, be introduced via ( 6 a ) .  

In the bridging equations ( 6 )  appears only the Hamiltonian H and not the operator 
@. To proceed in this direction we construct the formal Liouville operator via the 
identification 

L = i %  ( 7) 
where 

when the Hamiltonian H is known. In exactly the same way we may explicitly construct 
the operator @ directly from (4) by taking into account the form of the generalised 
product (,) in the classical case (Fronteau et a1 1979), namely 

@=ik (8) 
where 

Here si, is a well defined n X n matrix which expresses the content of the algebraic 
deformation in a precise form. We stress that the term (aH/api)sija/apj should not 
be interpreted strictly as a friction term. This less interesting instance is also included 
in the formalism, but we are mostly interested in the case when si, includes the effective 
interaction of the whole with the individual. This is the case which leads to the 
quasiparticle concept. 

Equations (7) and (8) split naturally in two parts. In particular we may write 

k'= 21+Y, k'= 2 2 ,  (9a, b )  
where 

n aH a n aH a pE - c - -, Y= c - s i j - .  
n aH a 

21.. c --, 
i = l  aqi api i = l  api aqi i , j = 1  api ap, 

Thus, given the Hamiltonian of the system and the algebraic deformation matrix 
si,, the formal operator @ can be explicitly constructed through ( s a ) ,  (9b) and (8). 
Clearly this is not enough. The star Hermiticity condition of @, or its counterpart on 
9, has to be checked. In fact we have 

@(L) = ik = i(-iL+ 9) = L+iY. (10) 

-2 = (-%(-I,))+ = -(iL + Y)' = iL - (11) 

Y = Y t  (12) 

Now the star Hermiticity condition (2) imposed on (10) gives 

which implies 

which means that the operator Y is necessarily Hermitian. 
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As a particular example of the above analysis we consider the Fokker-Planck 
equation for one particle in three dimensions. In this case we have the decomposition 
(Grmela et a1 1980) 

3 a  

ar, 
Qevp'=iR-b= 1 v i -b ( r ,  U, t ) ,  

where C and A are the coefficients of dissipation and diffusion. 

hand, from (13b) we have 
From ( 1 3 4  the relevant Hamiltonian can be identified as H = +mu:. On the other 

Condition (12) is automatically fulfilled for Y by construction. The above is a particular 
instance of a more general situation. In fact, whenever the algebraic deformation 
scheme yields real and symmetric matrices s,,, (12) will be automatically guaranteed 
by construction. 

Concluding this note it is worth noticing that the alternative procedure for breaking 
time reversibility, namely via a projection operator P which acting on p eliminates 
unphysical effects, does not seem to have a deformation counterpart, in general. In 
order to study this situation, first we notice that P cannot commute with the Hamiltonian 
entering the Liouville equation (1). 

In fact if it did we would have 

b = ~p = pe-tH'p(0)e'Hr = e-I"'b(O)elH', (15) 

i.e. the evolution of p' would be determined by the original Hamiltonian which is 
undesirable. 

Given that the commutator [ P , H ]  does not vanish we notice that the algebraic 
deformation scheme becomes effective only under special conditions. Specifically one 
must show the existence of an operator S which satisfies the relation 

[P, HI = HSP. (16) 

id$ = PHp - bH = H (  I + S ) b  - $3 (17) 

R = I + S ,  T=-I .  (17a) 

If this happens to be the case we find 

where the natural identifications follow 

Clearly the conditions for the existence of an operator S satisfying (16) constitute an 
open question even in the formal case. 
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